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1. Introduction. The fundamental theorem of the theory of 
almost periodic functions states that any almost periodic func­
tion /’(x) with the Fourier series

/ (x) 00 ^u(Â)elÀX, where a (2) = xW (/"(.r) >

satisfies the Parseval equation

•w;i /-(.or2; = 2|a(z)|2.

Many proofs of this theorem have been given. Among them 
the proof of Weyl [6] is, perhaps, the one which leads most 
directly to the goal. It depends on a systematic use of the process 
of convolution and on the methods of the theory of integral 
equations. Another proof, depending on the general theory of 
Fourier integrals, is due to Wiener [7]; it has been given a par­
ticularly simple form by Bochner [2, pp. 81—82],

Though these proofs give a clear insight in the whole theory, 
the more elementary proofs are not without interest. Among them 
the original proof of Bohr [3] is interesting by its crudeness. 
Its idea is to consider for every positive T the periodic function 
with the period T which coincides with /’(.r) in the interval 
(0, 7’), and to use Parseval’s equation for this function. By making 
Too, one obtains the theorem. The passage to the limit is, 
however, of a complicated nature, and the whole proof is very long.

A considerable simplification was obtained by de la Vallee 
Poussin [5], who used the same idea together with the convo­
lution process to prove the uniqueness theorem, which states 
that if a (2) = 0 for all 2, then /(a?) vanishes identically. From 
this theorem Parseval’s equation follows by a simple application 
of the convolution process. Since f(.v) vanishes identically if and 
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only if 4/(I/(t) |2} = 0, the proof of the uniqueness theorem 
amounts to a proof of Parseval’s equation in the particular case 
where u (z) = 0 for all z, A simplification of de la Vallee Poussins 
proof has been given by M. Riesz [4].

It seems very natural to base a proof of the fundamental 
theorem on almost periodic functions on the corresponding theo­
rem on periodic functions. It must, however, be mentioned, that 
the periodic function with the period T which coincides with 
/’(.r) in the interval (0, T) will generally be discontinuous in 
the points n 7’, so that it is not a special case of the theorem 
on almost periodic functions, which is used. Moreover, the periodic 
functions will generally not approximate f(x) outside the inter­
val (0, 7’).

The truth is that actually it complicates matters to introduce 
this periodic function. As will be shown in the following pages, 
the proofs take a simpler form if, instead of the Fourier series 
of the periodic function with the period 7’. we consider the 
Fourier integral of the function fT(x) which coincides with /‘(.r) 
in the interval (0, 7’) and is 0 elsewhere. Naturally, for large 
7’ this Fourier integral does not differ much from the Fourier 
series of the periodic function.

All we shall need on Fourier integrals is, that if F(x) is a 
function, which is continuous in a certain closed interval and 
is 0 outside this interval, and if

then in analogy to Parseval’s equation

Thus our proofs are more elementary than the proof of Wiener 
referred to above, with which they have no connection.

Our proof of the Parseval equation follows step by step 
Bohr’s proof. The main simplifications are in the beginning. In 
the later part a simplification in the exposition has been oh- 
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tamed by the use of a function introduced by Wiener [7, p. 495], 
connected with Bochner’s translation function [1, p. 136].

In our proof of the uniqueness theorem we use de la Vallée 
Poussin’s main lemma, which actually concerns the Fourier inte­
gral of the function fT(x). The simplification is in the remainder 
of the proof, where we avoid the artifice of choosing T as a fine 
translation number.

2. Proof of the Pa rseval c
from Parseval’s equation by replacing 

The inequality obtained 
= by > being an easy

consequence of Bessel’s formula, it is sufficient to prove the in­
equality obtained by replacing = by <.

For an arbitrary 7’> Ü consider the function

yÀ /(æ) C ,Ârd.r = M fT(x) e~lkx dx = aT(X). 

t'n J-oc

Then
/è00 /i00

7 \ I /(æ) I2 = H | fT (x) I3 dx = I ’ d 1 ‘

3. We begin by proving
Lemma 1. To every Zo and every ó > 0 correspond an (» > 0 

and a To > 0 such that

* 0 *- — oo —oo

It is therefore sufficient to prove:
To every 6 > 0 there exists a To > 0 such that

for T>Tn.

for T> Tq.

Proof. If /(x) is replaced by /(x) e—I^°x the function aT (Z) 
is replaced by nr(Z + Z0). It is therefore sufficient to consider 
the case Zo = 0.
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we have

hence
o

Since

Hence

T

2 c G2
T> 7o ?f2 for

zZc

(i) a (0) = 0, i. e. J/{/(a;)} — 0. — On placing for a given
c > 0

uniformly in a' towards Af{/(ar)) 

e > 0 a c = c(¿), such that when 
interval (0, 7’—c). In the inter- 

7) we have | (D (ar) | < G — supl/Cæ)!.
7') we have (I) (,r) = 0.

1 c/Z.

jX cP (a) c ",r dx = oT(Z) e 1

' —X

and consequently

-----QC

i r+c
cp (ar) = - \ /T (zy) </?/

» ,r

by a simple computation

c /’<!/) converges
* X

as coc there exists to every 
7’>c then | (D (ar) | < t in the 
vals (—c, 0) and (T—c, 
Outside the interval (—c,

For |Z|< (some) to — (c) we have

Hence

for T>Tq.

(ii) a (0) — o=|=0. — On placing /"(ar) 
a corresponding decomposition of aT(ar)

= o + /z (ar) we obtain 
in two terms:

oT(Z) = Pr(Z) + cr(Z).
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Hereby

Hence by the triangle inequality we have for every to > 0

T f* ‘"
1

27r\lflT<Z)|arfZ < 1 a 1 +
t — ÍO — (t)

Let e>0 be chosen such that (| a | + 3 ¿)2 < | a |2 + 3, and next 
by (i), since M {/i (æ) } — 0, the numbers to and 7’0 such that

Then

4. On account of Lemma 1 it is, in order to prove the 
Parseval equation, sufficient to prove the following

Lemma 2. To every 3>() there exists a finite set of numbers 
such that for every m > 0

V a'i (¿)|2í/¿ < /or 
A.—I > cd

T> (some) (*o) .

We shall reduce this lemma to a lemma on the translation

I À — Á,y| >. di

function
e(t) = supl/Cr + r)— f(x) |.

X

On placing for a given ? > 0

(.r + r) — (rr)

(x) e~l'x dx = (Z) (e"r—1);

we have
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hence

G

and consequently

and

On placing
when c (t) < t-

<f> (r)
when e (r)0 > t

we therefore obtain for every Ar>()

for

of the points lie in 
lie outside (0, T).

if the points x and x + r both lie in
< G if one

- 0 if both points

f — e(r)

1
T

X

N ow I W (x) I < e ( c) 
the interval (0, 7’), and 
(0, 7’), whereas W (x) 
Hence

if c(t)<

1 l* X2^U(r)dr
• o

’ —X

2tG2/ > —2~
í

\ Ii,; (æ) I2 < e G )2 + —7' 

» —X

¡ 1 ■
A W"

\ • 0

In order to prove Lemma 2 it is therefore sufficient to prove
Lemma 3. To every ¿>0 there exists a finite set of numbers 

2t, • • •, 2W such (hat for every w > 0 there exists an X> 0 for which

Y \ I e,ÁT — 112 T (0 d ' > $P (lM*
»- 0 • 0

when 12 — 2 L | > m, • ■ •, 12 — 2 v | > w.

5. Translation numbers of f(x) belonging to a given o>0, 
i. e. numbers r for which e(v) < q, will be denoted throughout 
by t (o). We shall first prove
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Lemma 4. For every o > 0 the sel S of numbers X for which 
| — 1 I < 1 for alt i = T (¿>) > () ¡s finite.

If 8 consist of the numbers /L, y[, there exists to every
(>) > 0 an A>0, such that if |Z— Zj > a), • • • , IZ — Z v I > m, 
then |elZ —1|> 1 for some positive t = r (o) < A .

Proof. By the uniform continuity of /’(x) there exists an 
?/> 0 such that any positive t < // is a r(o). Hence, if |Z|> zr/3 // 
there exists a positive t = r ((>) O/ for which |eIÀÎ—1|> 1. Thus 
S' belongs to the interval |Z| < zr/3^.

If Z' and Z" both belong lo S, i. e. if |Z'i| < n73 mod 2 ;r 
and |Z'7| < 7t/3 mod 2 n for all t — t(q)> 0, we have |Z'— Z" |1 < 
2,t/3 mod 2 n lor all t = r(o)>0. In particular, the interval 
2 7t/3 |Z'—Z" I < / < 4 zr/3 | Z' —Z" | of length 2 zr/3 |Z'—Z" | will con­
tain no r(o). Since every interval of a certain length I — l(o) 
contains a r (ç), we obtain |ZZ—Z"| > 2zr/3Z. Hence S is finite.

Let now w > 0 be chosen, and consider the closed bounded 
set of numbers Z for which |Z —ZL| > •••, |Z—ZM|>w,
|Z I < zr/3?/. This set is covered by the open sets Ut defined by 
an inequality |e'ÁÍ—1 |> 1 for a Z — t(ö)>0. Hence, by Borel’s 
theorem, it is covered by a finite number of these sets, say by 
ZJZi, • • - , Ut . As number A may then be used any number larger 
than the numbers q, tt, •••, t .

6. We now turn to the proof of Lemma 3.
The translation function e (z) being almost periodic, so is 

the function %(z). Since f/(z) is non-negative and not identi­
cally zero, we have

M { (f) (c) } = m > 0 .

In Lemma 4 let o — 4 m. Then the lemma gives numbers 
Zt, •••,ZM and, when w>0 is chosen, a number A > 0,

If |Z — Zt I > m, • • •, |Z — Z v| > w, there exists a positive 
t — t Q) < A such that | elÁl — 1 | > 1. For X > A we have

[| e1Àr— 1 |2 (¡p (r) +1 e'K (ï 1 Z)— 1 |2 (j) (r + f)\ dr. 
o

Now, since |Z/|> zr/3 mod2zr, the relations |Zr| < zr/6 mod 2 n 
and |Z(r + O| < zr/6 mod 2 n cannot be valid together, i. e. we 
have for every r
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max {| el¿T—112, |eiÅ(r+,)-l|2} > |ef7î/6-l|2 > |.

Moreover, since t is a r(o), we have e(r + /) < e(r)+o, and 
consequently

y + 0 > y (0 ~ (?•
Hence we obtain

Here the right hand side converges for X->oo towards 
|(m— (>) = yq m. The right hand side of the inequality in 
Lemma 3 converges for X~>oc towards m. Hence the latter 
inequality is valid for some X and the proof is completed.

7. Proof of the uniqueness theorem. The main lemma in 
de la Vallée Poussin’s proof slates that when n (z) = 0 for all 
Z, then aT(Â) -> 0 uniformly in Â as 7’~>oc. Starling from 
Ibis lemma the proof may by completed as follows.

For a given f> 0 lei To > 0 be chosen such that |ar(Z)| < e 
for all Z when For U > T > T\} consider the function

9tu Cr) = fÁ fu (æ + 0 fr (0 (lt = yÁ fu (x + 0 /(O dt-

oc V 0

Plainly, gTU(x) vanishes outside the interval (—7’, U) and coin­
cides in the interval (0, U—T) with the almost periodic function

By a simple

Hence
• X

< 62

1 
<JT (æ) = yA / (æ + t)f(t) dl. 

vo
calculation
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For ¿7->oo this gives

MdSrCr)!2} < s2 6a.

For T-> oc the function </T(x) converges uniformly in x to­
wards the convolution

Hence

<7 (æ) = M (f(x + t)f(l)}. 
t

M {I g (x) |2 } < t2 G2.

Since this is true for all ¿>0, we have M ( | g (x) |2 } = 0, which 
implies g (x) = 0. In particular </(0) — A/d/Cx)!2} = 0, and 
hence /(x) = 0.

8. Another variant of the proof of the uniqueness theorem. 
It may be remarked that a slight change in the above proof 
permits us to replace the use of Parseval’s formula for Fourier 
integrals by Parseval’s formula for periodic functions, which 
may be formulated as follows:

If F(x) is continuous in a closed interval of length P 
and is 0 outside this interval, and if

then

Applying this formula to the function <7TU(x), which vanishes 
outside the interval (— T, U), and using that /^(x) also vanishes 
outside this interval we obtain

and the proof is completed as before.
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1. The solution y(x,Â) of the differential equation

(1.0) y" 4- (22 — P (x)) y = 0

with initial values

2 = u 0 where u is real, satisfy

(1.1) y(0, 2) = 0, y' (0, 2) = 1,

will, in case P(x) is small enough for large x, and in case

(1-2) lim
X->00

y (x, u) = 0

where A(u) and (Z»(u) are continuous function of u, 0 <u<«>. 
The function </> (u) is the asymptotic phase.

The problem of determining the potential P(x) from (D (u) 
arises in physics. Recently C. E. Fröberg, [1], has given various 
approximate procedures for calculating P(x) from (D (u) based 
on the variation of constants formula or on one or more itera­

tions of this formula. He treats the equation y"—+ 

(22—(Px)) y = 0 where / is an integer. The equation (1.0) is 
the case Z = 0. Fröberg observes that his method need not of 
course be convergent. Indeed the question arises as to whether 
<Z>(u) determines P(x) uniquely at all. We shall show that with 
suitable hypotheses this is indeed the case. We shall also see 
that (I) (u) determines A (u) in (1.2) uniquely and conversely. The 
theory we shall develop for (1.0) can be carried over to more 
general cases. (See note on p. 27 for the case / > 0.)

Theorem I. If P(x) is piecewise continuous (or more generally 
if P(x) is Lebesgue measurable), if

1
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(1.3) 
and
(1.4)

P Gr) > O

( X I P (r) \dx < *>  , 
Jo

then (1.2) is valid where A (u) and tí) (u) are continuous functions 
of u. There is no other potential function Q(x) satisfying the same 
hypothesis as P(x) with an identical phase function tí)(u). More­
over (D (zz) determines A (zz) uniquely and conversely.

The condition (1.3) can be modified. However, without (1.3) 
it is possible for (1.0) to have discrete characteristic values 
Ik = ivk, k = 1,2, •••, where the vk are real. Associated with 
each /.¡. = ivk there is exactly one characteristic function z/(r,Âfc) 
which for large x is 0 (e~VkX). If we assume

(1.5)
>00

x2 I P (x) I dx < 00

in place of (1.3) then we shall lind that there are al most a 
finite number of characteristic values, ).k = ivk, and with vk 0.

We shall see that under the hypothesis of Theorem II, if

tí) (oo) — tí) (+0) < 7T,

then there are no discrete characteristic values. (In fact we 
shall find that we always have either O(so) = </) (+0) + mzr or 
®(oo) = tí) (4- 0) + ^m + n where m is the number of charac­

teristic values in zz>0, i. e. with 22 < 0). We now have the 
following result.

Theorem II. If P(x) is real and measureable and if

(1.6)
1 00

\ x I P (x) I dx + ( x21 P (x) I dx < oo 
Jo Ji

then (1.2) is valid. If there are no discrete characteristic values,
i. e., if tí) (oo)—(I) (4- 0) < 7T, then there is no potential function 
Q (x) different from P(x) satisfying (1.6) and with the same 
phase function tí) (u). Moreover tí) (u) determines A(u) uniquely 
and conversely.
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In case P(x) satisfies
A , ■

(1.7) \ I P (æ) I dx < oc
Jo

which is a stricter requirement at x = 0 than (1.4) or (1.6) it 
is possible to consider initial values of the form

(1.8) y (0, 2) = sin a, y' (0, 2) = cos a .

In this case we could dispense with some of the lemmas we 
require for Theorems I and II and use known results [2, § 5.3 
and Chapter VI] in their place. The methods used here will 
carry over to cover (1.8) with the assumption (1.7). However, 
in practise the condition

\ x I P (x) \dx< oc
•'o

is much more useful than (1.7) and we shall carry out our proofs 
for this case.

We shall see in the course of our proof that the spectral 
representation of a function f(x) involves the integral

1
7T

Thus we see that the weight function in this integral u2/A2 (u) 
determines A(u), and therefore from theorems I and II also 
(D(ii). Thus the weight function u2/A2(ii) can arise from one 
P (x) only.

In the course of our proof we shall also get the following 
relationship valid for any function f(x) in Å2(0, oo),

Í* 00

(1.9) g f (x) I2 dx = du I g, (x, u) f(¿) dx |2-

</ — 00

We shall see that there is a function of 2 = u + iv, F(F), 
analytic for p>0 and continuous for v > 0 such that for real 
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2 = il we have F (u) = A (zz) F </,("\ We shall see that the beha­
vior of F (2) as 2-*-0  is of concern to us and for this reason 
we need requirement (1.3) in Theorem I and

( x2 I P (x) I dx < ao
Ji

in Theorem II.

2. Here we shall show that <P(zz) determines A (zz) and con­
versely under the hypothesis of Theorem I. Actually we shall 
use only (1.4) except to show that F(0) 0 where we need
(1.3). Thus most of § 2 will be available to us to prove Theo­
rem II as well.

We shall require the following results. We shall use K to 
denote positive constants which depend on P(x) only. We recall 
2 = tz + ziz.

Lemma 2.0. If P (x) satisfies (1.4) then there is a solution 
y(x,X) of (1.0) satisfying (1.1) which for any x is an entire 
function of 2 and which for all 2 satisfies

Kxe,vlx
(2.0) ly(X’^l=ï+iïp 0<¡x<oo.

As I 2 I -> »
, < n sin Âx(2.1) ÿ(x,À) = —— +

uniformly in x, 0 < x < oo . Moreover y (x, 2) is an even func­
tion ofX.

Lemma 2.1. If P(x) satisfies (1.4) then for v > 0 there is a 
solution of (1.0), z/t(x, 2) which for each x is an analytic function 
of 2 for v > 0 and continuous for v > 0 and satisfies

(2.2) I (x, 2) I < Ke~vx, 0 < x <

and

., Kp~vx
I », (x, À) - I S —J- PCOI dS.(2.3)
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For p < O there exists a function y2(x,F) similarly related to 
e~lKX for large x or | Â |.

We shall prove these Iemmas in § 5. It is clear that for 
Z = u, yt (x, u) and y2(x, u) by (2.3) are independent solutions 
of (1.0) for large x. Since they are independent for large x, 
they are independent for all a?, 0 < x < *>  . From (2.0) we have

(2.4) y(x, Z)| < Kot1"11.

We also have, as can be verified by substitution into (1.0), the 
“variation of constants” formula 

(2.5) y(x,Z) = S~—+ y Ç sin Z (x—£) P($)</(£, Z)d£.

Here the right side exists because of (2.4). We see from (2.5), 
by use of (2.4), that for /. = (i # 0 we have as x->*>

(2.6)

y(x, u) = —n-^il 4-jcos u$P(£)y(£, u) d%

^cosux c y (J, uy <754-0(1).
« Jo

Or as x —> oc

y (x, u) — sin (ux — G) (u)) + o(l)

where if

F(u) = 1 + (e,u* P(£)y(£, u) d'S. 
Jo

then by (2.6)

A (u) = I F(u) I, (D(u) = arg F(u).

Since y(x, u) is an even function of u, A(u) is an even function. 
From (1.4) and (2.4) we see that

(2.7) F(Z) = 1+ p^PODy^, Z)¿?
Jo

is an analytic function of Z for v > 0 and is continuous for 
p>0. The properties of F(Z) are given in the following lemma.
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Lemma 2.2. If P(x) is real and satisfies (1.4) then F(2) 
defined in (2.T) is analytic in the half-plane v > 0 and conti­
nuous for v 0. In v > 0 it can vanish only for values of 2 
for which u = 0. If 1k = ivk, vk >0, is a root of F (2) = 0 then 
y(x, ivk) is a characteristic solution of (1.0) satisfying, for some 
Ck

(2.8) y (x, ivk) = Ck yt (x, iuk) 0 as .

For large 12 | we have

(2.9) F (2) = 1 +o(l)

uniformly for 0 < arg 2 < 7t.

The proof of lemma 2.2 is given in § 5.

For v > 0 we have the following relationship for el/1 y (x, 2) 
as x » . From (2.5) we have

i i x / ix i ) x s i n 2 xel'xy(x, 2) = e —j—

+ sin 2 (x — £) eÎÂ (x~~^ P($) y (£, 2) <Z£.

Letting x’->oo and using (2.4) we get

(2.10) iim el''Ty(x, 2) = — .
x->oo y 2z2

We shall now introduce the hypothesis P(x) > 0 and show 
that in this case F (iv) 4= 0 for v > 0. We have

(2.11) F(iv) = 1+{e~v^ P($) y (%, iv) d%.
*o

Since y" — (v\ + P)y, y(0, ivf) = 0 and y (0, ivf) = 1 we see 
that y" > 0 and thus y '1 and y > 0. In (2.11) this yields 
F (iv) > 1.

Since F (2) 4= 0 for p > 0 and since F(2) = 1 + o (1) as | 2 | -> oo 
uniformly for 0 < arg2 < n, wee see that y (2) = log7?(2) is 
analytic for v > 0 and continuous for v > 0 and moreover we can 
choose g (2) so that
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(2.12) g (2) = o(l) as I Z I -> oc

uniformly for 0 < arg 2 < n. Applying Cauchy’s theorem over 
a semi-circle of radius R with center at 2 = 0 and diameter on 
the real axis and letting oo we find by use of (2.12) that 

(2.13) g (2) = lim
R -> oc 2 7T I

where a is real and 2 = u-\-iv, v>0. In the same way if 
T= u—w, n>0 then

(2.14)

Taking the conjugate of the latter formula and adding to (2.13) 
we find

S(2) = nm 1

J R-> oc 7T \ 2

J- R

Or since Im^(tf) = (1) (a)

(2.15) log F (2) = hm - \ ------ y da.
I{->■ r. /T i O' Z 

J- R

Thus we see that determines F (2) and in particular then, 
<Z>(u) determines

A (u) = lim I F(u + m) |.
V -> + o

We observe that 0>(u) is an odd function of u. By subtracting 
the conjugate of (2.14) from (2.13) and using the fact that A («) 
is even we get for v > 0

i rm 2 2 Í loSA (tf) i 
log f w = Vi \ da-

Jo

Thus A(u) determines F (2) and in particular then determines
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(D(u) = lim Im logF(u + iv).
t>-> +o

3. We now assume that there is another differential equation 
with P(x) replaced by Q (x) where Q (x) satisfies the same hypo­
thesis as P(x) in Theorem I and where the asymptotic phase is 
again <Z>(u). The equation is

(3.0) z" + (Z2 — Q (x)) z = 0.

Since the asymptotic phase of z(x,u) is d>(u), its asymptotic 
amplitude is A(u)/u. Thus

(3.1) z (x, u) = sin (ux — (l) (u)) + °O) 

as x—where z(0, ii) = 0 and z'(0, u) = 1. There are also 
two solutions of (3.0), zr(x,Z) and z2(x,l) satisfying the same 
conditions as z/1 and y2 in Lemma 2.1.

Returning to y (x, u) where u # 0 we have since yt and y2 
are independent solutions.

y(x, u) = Ct(u)yi(xt u) + C2 (u) y2 (x, ii).

Letting x->oo we have

sin (ux — (D (u)) = Ct (u) elux + C2 (u) e tux + o (1).
u

From this we see that indeed the term o(l) is zero and that

C1 (u)
A (a) e-1“^

2 iu C2(u) =
A(u) eit/i(u)

2 in

Thus

(3.2) z/(x, u) A(u)
2 iu yi(x,

In exactly the same way we see that (3.1) implies

(3.3) z (x, u) A(u)
2 iu

z,(x, u)e-‘*(u,-z2(x,

Let f(x) be a real differentiable function which vanishes for
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x near zero and for large x. Let max (| f(x) | + | f (x) |) — M. 
(These requirements on f(x) are somewhat more severe than is 
actually necessary for our argument.) We now consider the fol­
lowing pseudo-Green’s function integrals of f(x),

(3.4)

Ht (æ,2)

(æ, 2) = zt (x, 2) jj y Gc, 2) /*(£)  d‘i.

Clearly for each x, H-,j = 1,2, is analytic in 2 in the upper half­
plane u > 0 and continuous for v > 0. Thus if c is the semi­
circle of radius R, 2 = Re10, 0 <6 <7t, then for any x, 0 < x < » , 
Cauchy’s theorem yields

Let <) > 0 and let

A
¡“Z1 (J, 2) /-(S) dj = '' + G J z, (J, 2) /(J) dj.

Using (2.3) we gel since ( |P(£) | d£ < ( | P(£) | d$/x,
Ar

/«X + d'

J®

Integrating by parts we have
/ 4- ()

\eaV(S)i7K
•4

ea*f(x)  
a

Môe~vx , Me-(x + d)l' 
|2| + |2|

Thus

(3.6) KMe~vx
= 1*1

Therefore for large 12 | = R, using (2.1) (2.9) and (3.6)
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We also have the following result.

lim
H -> oc

where uniformly for any closed interval of x interior to the open 
interval ((),=<)

If d = R 11 we have uniformly in x for any closed interval of x 
interior to the open interval (0,a>),

\z, (J, u)/■(?)<<?■
• X

(3.9) /'(.t) = J;- lim
7T l ]( -> oo 

(3.8) lim
R -> oo

Vc

^ + Js(x,Z)

Lemma 3.0. For any x>0,

The proof of this lemma is given in § 5.

Using Lemma 3.0 we have

\m(ï’X)ri? = ■ •'r'Fæ)•

VC
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Since zt(x, u) is a solution of (3.0), zt(x, u) — Clzl(x, u) 
C2z2 (x> u) • Letting oo we see that zt (x, u) = z2 (æ> u)« 
Taking the conjugate of (3.7) and (3.9) we have therefore

(3.10) y(x) = — —. lim \ -y¡jí^^duCz2(£, u)f(£) d£,
7TZ R->oc 1 r \ll) ,’x

v-R

(3.11) /■(x)=—Â lim Ç ^—^du ( y (S, u) f(§) d$.

7C1 R -> oo 1 V \U) ,'q
V-R

Since by (3.3)
( _ Aa (u) /zt (x, ii z2(x, u)\

Z{X’U) 2iu[F(ii)‘ F(u) I

we have by adding (3.7) and (3.10)

Pb2
(3.12) f(x) = lim - ll)f(£)d%-R + oo 71 A A (u) ,)x

V—R
In the same way (3.9) and (3.11) give

(3.13) f(x) = lim - du ( y (£, u)f(£) d£.
R->x7t A A‘(u) ,i0

V-R

Interchanging the role of y and z we get instead of (3.12)

f(x) = Um I Ç du y <£> “) /($) d>-
R -> oo 7t 1 A (U) Jæ

V-R
Combining the above with (3.13) we have

i* B 2
(3.14) f(x) = lim - \-^^-z(x, u) l*y  (?, u)/’(ÿ)d^.

R -> oc V“1 x.^0 • ()
V-R

Since the convergence above is uniform except near x — 0 and
X = oo where f(x) vanishes we have

9 00

(3.15) f/‘2(x)dx= lim - (z(æ, u)/,(.r)dx*  (y(ÿ, r)/-(^)dS.
• 0 R -> oo Tt A A (Uy Jq ,'q

V-R
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The derivation of (3.15) is certainly valid if z is replaced by y.
Thus

(3.16) j¡>(x)dx = Blim 1 \ ~gy(x, u)/(x)dxf

d-R

and the corresponding result with y replaced by z. Combining 
we get

= 0.
/(,s0 ,.oc \2 du K y (.r, u) f(x) dx — z (x, u) f(x) dx] =

pOO
= \z(æ, u) f(x) dx.

Jo

1
A2(u)
- 00

pOO

\ y (x, u) f(x) dx 
Jo

»x
1 H2

7T

Thus
(3.17)

For any fixed u let us suppose z(x, li) y(æ> u)atx = >0.
Let us suppose then that y (xït u) —z(xlt u) > 0 for some u. 
Since y(x, u) and z(x, u) are differentiable they are continuous 
and we must have for small <5>0, where xt — ô >0,

y(x, u) — z(x, u) >0, | æ — xt I < ô.

Choose f(x) > 0 for |æ —æj<0 and f(x) — 0 for |æ —æj > ó. 
Then clearly for the value of u in question

( [y (æ, u) — z(x, u)] f(x) dx>0
•'o

which contradicts (3.17). The same argument applies of course 
if z — y >0 and we see then that y(x, u) = z(x, ii). Therefore 
from the differential equations for y and z we get

(3.18) y(x,u) [P (x) — Q (æ)] = 0.

(In case P(æ) or Q (.r) are discontinuous (3.18) holds almost 
everywhere.) Since y(x,u) vanishes only for isolated values of 
x and since xP and xQ are integrable we have P(x) = Q(x) 
almost everywhere which proves Theorem I.

4. Here we no longer assume P (æ) > 0 but rather that
í,oc i i < <

\æ21 P (.r) I dx < » and proceed to prove Theorem II. Lemma 2.2 
•'i 
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is valid but the argument in § 2 which follows it can of course 
no longer be used. Now we shall show that either F(0) # 0 or 
else that near Z — 0 and for v > 0

(4.0) F (Z) = aZ + o(|Z|) where a # 0.

Since F(Z) -> 1 for large | Z | and is analytic for v>0 and since 
the zeros of F(Z) all lie on the line u = 0 we see that either 
F(0) 0 or (4.0) implies that there are at most a finite number 
of zeros of F (Z) in the upper half-plane.

With F(0) = 0 we also have

(4.1) F (Z) = ( e'/x y (Z, x) P (.t) dx—Sy (x, 0) P(,r) dx.
•’o Jo

Thus
F (Z) = Ç (<>' — 1 ) y (x, 0) P (x) dx

z X ^0

(4.2)
+ ( [y (x, Z) — y (x, 0)] P (x) dx = A + Z2 • 

Jo
Here

(4.3) Ir — {(e1 ¡'x — 1) y (x, (f) P (x) dx
Jo

and Z2 represents the second integral in (4.2). We have from 
(1.0) when F(0) = 0

(4.4) y (x, 0) = 1 + ( P(£) y (?, 0) = - (p(í) y ('$, 0)
Jo Jx

Or since by Lemma 2.2, |y(æ, 0) | < Kx,

\y'(x,0)\< K (s|P(Ö|d?.
• X

Thus

Gy' (æ, 0)1 dx < K \*dx  G'|P($)|i/ÿ = K G2|P(£)|<7£< oo .
Jl Jj Jx Jl

From this we see that

(4.5) |y(x, 0)|<K.

From (4.3)
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Ix — iX \xy (x, 0) P (x) dx

S \ I eax - 1 - ikx 11 y (x, 0) P (x) | dx
•’o

V/lÅl r* 00
< | 2 |2 \ x21 y (x, 0) P (x) I dx + 3 | 2 | \x\y (x, 0) P (x) | du, 

€o ^7ui

wherein the last integral above we use |e'¿x—1 | < 2 for v > 0 
and 2 < 2 | 2 | x for x > 1/| 2 |. Using (4.5) we see that as | 2 | -> 0

(4.6) It — i2 j xy (x, 0) P (.r) dx = o ( | 2 | ).

Now we shall show
/» X

(4.7) ^xiy (x, 0) P (x) dx # 0.

We have from (4.4)

(4.8) y (x, 0) == æ +( (æ — S) P(£){/(£» 0)

If (4.7) is false and if F(0) = 0 then (4.8) becomes
/»X n<x¡

(4.9) y(æ, 0) = -x ( P(J) y (J, 0) dj + \ î P(ï) y (£, 0) dj.
Jx *x

Let xt > 1 be large enough so

(?lp«)ldí< J. 
•'ll

Let max | y(x, 0) | = in. Then by (4.9)
X ^.Xi

00 1
m 2 \ £ | P (£) y (Ï, 0) I d £ < - m.

*®l

Thus in = 0 which is impossible and we see then that (4.7) 
holds. Thus from (4.6) we have as 2 -> 0

(4.10) It — w2 + o(|2|) where « + 0.

We show next that 72 = o(|2|) as 2-> 0. We have

7a — \e'ÂXly (æ, ¿) —y(æ» o)] p(.t) dx.
Jo

(4.11)
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As solutions of
(4.12) y" — P(x)y = 0

we bave y3 (x) = y (x, 0) and an independent solution y4 (x) 
chosen so that {/3I/4 — í/4i/3 = 1. Since by (4.4), y3(x) — x~+0 
as x->-0 we see that a solution of (4.12) independent of z/3 is

and this is hounded as x->(). Thus y4 is bounded as x->0. 
We have obviously also

y4 (æ) = Í/4 (æi) + (æ — æi) y\ (æi) + ( (x — ?) P (?) J/4 (?) ^?-

If max
X, X_ü X.

.VjXæ)
X

= ni and if xt

clearly for large x2

is chosen as below (4.9) then

Thus

m < I y4 (xt) I + I y'4 (xt) | + m C ? | P(?) | d?.
»'x,

< I y\ (æi) I +1 y4 (xt)

and we see that | y4 (x) | < Kx for large x. Now if

y " — P(x) y = f(x)
then
y (x) = cty3 (x) + c2y4 (x) — ( [y3 (x) y4 (?) — i/4 (x) y3 (?)] /(?) d?. 

Jo
Thus from

y" (x, Z) — P (x) y (x, Z) = — Z2 y (r, Z)

we have

y (x, Z) = y3 (x) + Z2 í [y3 (x) y4 (?) — z/4 (x) j/3 (?)] y (?, Z) d?. 
Jo

Thus
• °° /»X

4 = \ P(x) dx \ [y3 (x) z/4 (?) — y4 (x) y3 (?)] y (?, Z) d?.
Jo Jo

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXV, 9. 2
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Or
I Z21 < KI2 I2 í x I P(x) I dx ([ | y (£, 2) | é~vx d'S.

•'o «'o

Using Lemma 2.0 we have

|Z2| < Æ|Â|2 (æ| P(.r)|<Zr

•'o
Yi+fïïï^-
VO

Thus j,
/• / I À I /«X

| Z21 < F|2|2 \x\P(x)\dx\SdS
•>0 *0

+ K12 |2 \ X I P (x) I dx

z»1/1;! poo z,=c

< K1212 \ x31 P (x) I dx + K \ x I P (a;) | dx + K12 | \ | p (æ) | ¿x
*'o *'7 iài *V iài

c7ml/‘ c7iài
< Æ|2p \ x21 P(x) I dx + KI 2 I \x2|P(îe)I^

♦4
p 00

+ 2K|2| \æ2| P(x)\dx. 
Jyizi

pOO

Since \ x2 I P(x) | dx < oo we have then as 12 | —> 0 
Jo

4 = o(|2 I).
Thus we have demonstrated (4.0).

Exactly as in § 2 we find that if F(0) =1= 0 then the formula

log F(2) = lim — \ da
r-^k n Y o'—2

Uh

is valid as are the other formulae. In this case we have, since
F(2)->1, as 12 I -> oo, that the total number of zeros of F (2)
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in v> O is given by (</> (oo) — d) (— oo))/2 n = (<Z> (oo) — O (O))/zr. 
Since (Z>(4-0) = <Z>(0) here we see that if <Z>(oo)— (D(4-0)<zr 
the total number of zeros must be zero and in fact that iZ)(oo) = 
<Z> (0). Since <Z>(oo) can be taken as zero we see that (D (0) = 0 
and thus if F(0) # 0, F(0) >0. If F(0) = 0, then we can work 
with a contour containing a small semi-circle, with center 
at 2 = 0 and radius ç. On 2 = qe'fí, 0 < 0 < ti . Thus as 
in (2.13) <7 (2) = logF(2) is given by

1
2 7TÎ

a # 0 we have

(j (2) = lim
l{ -> X

\(l(i-2 7T I 1 O' — 2

F (2)Since <7 (2) = log —---■ ¿-log 2 near 2 = 0 we find on letting

F (2)o—>0 that since

<7 (2) = lim —-

from which all the other formulas relating F, A and (D follow. 
Here we find that (-|- 0) — <Z>(—0) = —zr and that the total 
number of zeros m of F(2) in v > 0 is given by

m = -L(©(oo)-(p(+o) + a)(-o)-a)(-oo))-l
2 n 2

Since </> (oo ) — (/) (4- 0) = (D (— ()) — (Z>(— oo ) we have m = — (0 (oo ) — 
n

®(+0)) — Since (D (oo) — (Z> (+0) < yr we see that m = 0. In 

fact here we must have ø(oo) = (Z) (4-0) + ~zr. Since we take 

0(°o) = O we have 0(4-0) = — zr. Also 0(—0) = ^zr and as 

in the other case 0(u) is an odd function. The results of §3 
carry over without change thus establishing Theorem II.

5. Here we prove a number of lemmas. In all these lemmas 
we shall require only that

2*
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(5.0) ( XI P (x) I dx < oc .
•’o

In the proofs of Lemmas 2.0 and 2.1 the formulas are written 
for the case 2 # 0. In case 2 = 0 the changes involved are obvious.

Proof of Lemma 2.0. Consider the sequence yn(.r,2) where 
y0(x, 2) = 0 and

(5.1) yn(x, 2) = + ^sin2(x —^) P(^) yn_1Q, 2)d£.

We have if 2 = u+zp, for p > 0

(5.2) I y( (æ, 2)— v() (æ, 2) I

Thus

(5.3) li/i- y0| =

and this is true for all 2. Using this in (5.1) we get

I y2 - y 11 S
sin 2 (x— £)

~2
P(£)|4£e|p,5i7£.

Much as we found (5.3) we have

(5.4)

Thus

If we set

then

sin 2 (x— $)
)

< 4æe,p|(x-* ) 0 £ I < x.

|y2-yil<42xe"’lai£?|P(?)|dJ.

•X
B(x) = U|P(£)|d£< Çæ|P(x)|dx

•'o Jo

|y2—yd < 42xe"’l*B(x).

Again from (5.1) we have

|y3-y2| < 42xe"’1* j¡ ? | P(?) | B (?) = 4W"*
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Proceeding we have
l»n-Sn-l I < 4'fa+‘'" QU”»"

(n —1)!

Thus in any finite range of x and finite region of 2, yn(x, X) 
converges uniformly to a limit y(x,s.) which is therefore ana­
lytic in 2 and hy (5.1) satisfies

(5.5) y (x, 2) = sin/x +1 j sin 2 (x — £) P(£) y (§, 2)

From (5.5) we see easily that y(x,Å) is a solution of (1.0) and 
satisfies

</ (0, 2) = 0, y' (0, 2) = 1.
Let

(5.6) M(x, 2) = —1 y (x, 2) I (1 + 12 | x) e |v|x. 
x

From (5.2) we have easily by considering separately |2x| < 1 and 
12x I > 1,

sin2x < S.re1'711
2 1 -{-12 I x

Using this in (5.5) we have

xM(x,ï)e'8xel"l*  ffa-?) e1»1 (*~ s . . 

i+izix s i+izfa i i+|zifa-s)1 Wl i+m?
vo

Or
Aifafa) <8 + 8 fj|P(J)|Af(J,A)dJ.

By a well known inequality this implies

M(x, 2) < 8 exp 8 U|p(£)|d£

Using (5.0) we have M(x, 2) < K. With (5.6) this gives

(5.7) |ÿ(a;,Â)|<-_.

In (5.5) this gives
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1
I1/.

Thus as 12 I -> »c

< Ke'v,x

= R|

l-tu 
I 2 I ' 1 +12

, sin2x y O, 2)— -- Á

/>71 à i1/«
vo

J'/uf'1

That y(x,2) is an even function of 2 is clear from the fact 
that each yn (x, 2) is even. The completes the proof of the lemma.

Proof of Lemma 2.1. Let VV0(x,2) = 0 and let

(5.8) W„(xR) = eax- Â(x—J)P(J) IV„_, (JR) dj.

From (5.3) for v > 0 

sin 2 (x — £)
1.

< 4(?-x)e’®-,)

Clearly | IV,— IV, | < e ox and

|IV2(xR)-IV1(x,!Z)| < 4 r(J-x)e,,<s-* ,|P(J)|e-’f</J
• X

< 4e~vx p|P(£)|d£.

If
B(x) = p|P(S)d£

then
1 W2 - 1 < 4 e~vx B (x).

Again
1IV, - W21 42 e~"x \J1P (S') 1 H (J) rfj 

*X
_ 42 — i>x (æ))“ |2 vx (ß (°))2

2! = 2!

etc. Thus Wn (x, 2) converges uniformly for v> 0 andO <x< <*>  
to a limit we denote by yt(x,X). Clearly
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|{/i (.r,2)| < Ke~vx 
and from (5.8)

From this we have

(5.9) J/i(æ, 2) = e'kx— (sin2(.r —£)P(£)yi(£, 2)(/S. 
Z J.T

This proves the lemma.

(5.10) IM*.  JjP(l-)|di.

Proof of Lemma 2.2. That

F (2) = 1 + Ç elÀX i; (æ, 2) P (.r) dx
Jo

is analytic for v > 0 and continuous for o >0 follows from
Lemma 2.0 and (5.0). That F (2) = 1 +o(l) uniformly in v > 0 
as I 2 I -> oc follows from use of

iFW-n <U‘_
vo

r./lA1’'- (•"

Iz| •’7m-/.
For real 2 = u + 0 we have as in (3.2)

y (x, u) = [ÿl (.r, u) e~‘ *< “> - Vi (.r, u) e‘*“].

If F(ii) = 0 then A (u) = 0 and y(x, u) = 0 which is impossible. 
Thus F(u) # 0 for u + 0.

Let F(2) vanish for some 2t = + i>i >0. For large x

!h (æ. ¿i) = —2/2! yt (x, 2J \ ¿i)

•7

is a solution of (1.0). Since y^x,^) ~ efÂlX we have 

i Ai xy3 (æ, 2t) ~ e
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as a;-* 1». Moreover from (5.9) we also get

(5.11) z/i(x, Â) ~

Since yt and y3 are obviously independent

y(x, 2t) = kj + c2y3(x, kJ.

If F (kJ = 0 we see from (2.10) that we must have c2 = 0.
Thus
(5.12) y(x, kJ = (^(x, kJ ~ CteiklX

and from (5.11)

(5.13) y'(x, 2t) ~ zc121 e,Å1X.

Using a familiar argument we have that the conjugate of y(x, ZJ, 
z/ (æ, Zj) is a solution of (1.0) with replaced by = ut — hf 
Thus

y(x, kjy (x, kj — y(x, kJ y' (x, kJ

+ (IJ--Z5) i|y(x,Z1)|2da; = 0.
•'o

Letting æ—>oo and using (5.12) and (5.13) we have

(I?—2?) ( I y(x, 2t) |2cte = 0.
<’o

Thus Ut = 0 and kt = ivt if F (kJ = 0. This completes the 
proof of the lemma.

We prove finally

Lemma 3.0. We have by (5.5)

(5.14)
+ ?nïr V(ï)dï ^inX(J-s)P(s)ÿ(s,Z)ds = I. + h.

Clearly on integrating by parts

Zt (æ, X)
F(k)

— f(x)
cos kx i jcosZSf (S)d$
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Thus for large | Z | and v > 0 using (2.2) and (2.9)

r , zt(.x’,/)/’(-r)cosz.i- < Ke C]/L JV| , KM à
'■ +----- . ■ = -[XT -w ®d?l+W

where we recall M = max (| f(x) | + | f (.r) | ). Or hy (5.10) and 
the above inequality for large |2|

(5.15)

< 11 + 2 2 F (2) f(¿)
/•(æ)(F(Â)-l)

2 2 F (2)

KMxe~(fo

Rl
KMÔ I/’(.r) (F(2) — 1) Me~2vx
|2| +| 22F(2) + |2|

For I2 we have inverting the order of integration

(5.16) 4 - y \y (s, 2) P (s) D (.r, s, 2) ds

where
D = (/"(£) sin 2 (£ — s)

•’s
Integrating by parts we find

D = — —Ù y(.T) _|_ / s 1 cos ¿ (g _ s) f fie

Thus for large | Z |

Ini < WM(r + l)

Therefore

Jo

We have easily since |2| = R on c

(|Za||d2| S ^Æ(.t+1)7t Ç-—
\ 1 + Rs 
Jo

I P(s) I ds.

Thus as oo
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(5.17) (|/2||rfZH0
Jc

uniformly in x over any finite interval of x. From (5.15) we 
also have easily for x > 0 that as |2| = B->oo

(5.18)

providing we take ó = R uniformly in x over any closed
interval in x interior to the open interval (0,<*>).  But (5.17) 
and (5.18) complete the proof of Lemma 3.0.

In the introduction we remarked that Plancherel’s theorem
(1.9) holds for /‘(æ) «L2 (0, oo ). In (3.16) we proved it for a 
restricted class. It is easy to exploit (3.16) to show that for any 
f(x) eL*(0,  x)

9 (“) = 1. i. 111.
a -> oc

U
A(u)

\ Î(æ) y (x. li) dx
*o

must exist and that

C(g (u))2 du = dx.
•’o *'o

In case (1.0) has discrete characteristic values it is still the case 
that (R (u) determines F(2). Indeed it can he shown that the 
zeros of F (2) which as we have seen occur al characteristic
values 2fc = ivk are all simple. If 
known then clearly

in 
G(Z) = F(Z) J[

A- = 1

the characteristic values are

is free of zeros for u>0 and thus log G (2) is analytic. More­
over I G (u) I = I F(u) I and

m
arg G (u) = arg F(u) + X arg

k-1

Thus G (2) can be found and therefore also F (2).
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Added March 9, 1949.

The method used in proving Theorem I carries over to the 
equation
(i) y" + (u2 — —p(æ)j y = 0

where Z is a positive integer and P(x) satisfies (1.4). Indeed if 
Í7tx\l

j\ (.r) == I I Jl + i (æ) where + , (x) is the Bessel function 

then (1) has a solution y(x,u) which satisfies

(2) lim
X -> + 0

y fe.ii) 
J i (æ)

(We recall that except for a constant jz(.r) acts like xl ' 1 as 
.r->0.) Moreover for any u>0,

(3) y(x, n) —^y^sin^ux —2 Ztt —<7>(u)j->0 

as x-> <x>. It is indeed the case that (D (u) determines P (x) uni­
quely if

(4) '(L±D , P(x) > 0

(and as already stated if (1.4) is satisfied). (The condition (4) 
has considerably wider possibilities in application than the special 
case Z = 0.)

To indicate the modifications necessary for the case Z>0 we 
introduce

h,(x) = (’vY Hi? •
\ 2 / 1 + t 2 ix

where , (.r) is a Hankel function. Clearly 7iz (zz.r) is a solu­

tion of (1) with P = 0 as is 7iz(—zz.r). We also have

>z (æ) = (æ) — (— 1 )Z ^z æ) I
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and
À'z (æ) = [A, (x) + (— 1 )Z hl (— æ)]

from which it follows that

jz (.r) + zå-z (.r) = 7zz(.r).
If

y(x, k) = j\ (2 Í) kl (2?) —jz (2£) kt (2x)

= V [h,(l X) A, (— A J) — h, (- lx) A, (A £)],

then the “variation of constants” formula (2.5) becomes

/’ (2x) 1
(5) y(x, 2) = £> 2)/J(?)y(?, 2)cZ£.

2 z *’o
It is easy to show that, with 2 = zz + zzz, and v > 0

|j,(Aæ>| < , x < 0,
(1 +| 2x| )

for some constant K, and also for æ > £ > 0

\g(x,S,l)\<Ke"(x-’'
(l+lW |Ax|, + 1

|A?I' (l+|Ax|)' + 1'

Using these we get from (5) the analogue of Lemma (2.0) includ­
ing (3). Here we also lind for v > 0 as a generalization of (2.7)

F(l) = l-itÄ'ff(J,A)P(J)A,(AÖ</?
Jo

where A (zz) = | F(u) | and (D(ii) = argF(u). Instead of (5.9) we 
have

yi(x, 2) = 7zz(2.r) + ^(g(x, i', 2)P(£)i/1(£, 2)d£.
•'X

These indications suffice to show the changes in going from 
the case of Theorem I (Z = 0) to the general case.

Added in proof: An analogue of Theorem II for / > 0 also 
holds. Interesting examples of cases where the phase does not 
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determine the potential (owing to the presence of discrete cha­
racteristic values, i.e. bound states) have been given by V. Barg- 
mann (Phys. Rev. 75 (1949) p. 301).

(This paper was written while the author was a John Simon 
Guggenheim Memorial Fellow on leave from the Massachusetts 
Institute of Technology.)
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